Dictionary Learning for Stereo Image Representation
نویسندگان
چکیده
منابع مشابه
Active Dictionary Learning for Image Representation
Sparse representations of images in overcomplete bases (i.e., redundant dictionaries) have many applications in computer vision and image processing. Recent works have demonstrated improvements in image representations by learning a dictionary from training data instead of using a predefined one. But learning a sparsifying dictionary can be computationally expensive in the case of a massive tra...
متن کاملDictionary Learning for Scalable Sparse Image Representation with Applications
This paper introduces a novel design for the dictionary learning algorithm, intended for scalable sparse representation of high motion video sequences and natural images. The proposed algorithm is built upon the foundation of the K-SVD framework originally designed to learn non-scalable dictionaries for natural images. Proposed design is mainly motivated by the main perception characteristic of...
متن کاملDictionary Learning in Stereo Imaging
This paper presents a new method for learning overcomplete dictionaries adapted to efficient joint representation of stereo images. We first formulate a sparse stereo image model where the multi-view correlation is described by local geometric transforms of dictionary atoms in two stereo views. A maximum-likelihood method for learning stereo dictionaries is then proposed, which includes a multi...
متن کاملImage Restoration Through Dictionary Learning and Sparse Representation ⋆
Based on the content dual-dictionary learning and sparse representation, we put forward a novel method of image restoration. This method can improve the adaptive ability of the image. To restore the image, the dual-dictionary is trained with sparse representation. Comparing with the traditional dictionary learning algorithm, the method in this paper can capture more high-frequency information a...
متن کاملDictionary learning for image prediction
We present a dictionary learning algorithm which is tailored to the block-based image prediction problem. More precisely, we learn two related sub-dictionaries Ac and At , the first one (Ac) for approximating known samples in a causal neighborhood of the block to be predicted and the other one (At) to approximate the block to be predicted. These two dictionaries are learned so that representati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2011
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2010.2081679